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3. Examples of discrete probability spaces

Example 17. Toss n coins. We saw this before, but assumed that the coins are fair. Now
we do not. The sample space is

Ω = {0,1}n = {ω = (ω1, . . . ,ωn) : ωi = 0 or 1 for each i≤ n}.

Further we assign pω = α(1)
ω1 . . .α(n)

ωn . Here α( j)
0 and α( j)

1 are supposed to indicate the prob-
abilities that the jth coin falls tails up or heads up, respectively. Why did we take the
product of α( j)

· s and not some other combination? This is a non-mathematical question
about what model is suited for the given real-life example. For now, the only justification
is that empirically the above model seems to capture the real life situation accurately.

In particular, if the n coins are identical, we may write p = α( j)
1 (for any j) and the

elementary probabilities become pω = p∑i ωiqn−∑i ωi where q = 1− p.
Fix 0≤ k ≤ n and let Bk = {ω : ∑n

i=1 ωi = k} be the event that we see exactly k heads
out of n tosses. Then P(Bk) =

(n
k
)

pkqn−k. If Ak is the event that there are at least k heads,

then P(Ak) =
n
∑

!=k

(n
!

)
p!qn−!.

Example 18. Toss a coin n times. Again

Ω = {0,1}n = {ω = (ω1, . . . ,ωn) : ωi = 0 or 1 for each i≤ n},

pω = p∑i ωiqn−∑i ωi .

This is the same probability space that we got for the tossing of n identical looking coins.
Implicit is the assumption that once a coin is tossed, for the next toss it is as good as a
different coin but with the same p. It is possible to imagine a world where coins retain
the memory of what happened before (or as explained before, we can make a “coin” that
remembers previous tosses!), in which case this would not be a good model for the given
situation. We don’t believe that this is the case for coins in our world, and this can be
verified empirically.

Example 19. Shuffle a deck of 52 cards. Ω = S52, the set of all permutations3 of [52] and
pπ = 1

52! for each π ∈ S52.

Example 20. “Psychic” guesses a deck of cards. The sample space is Ω = S52×S52 and
p(π,σ) = 1/(52!)2 for each pair (π,σ) of permutations. In a pair (π,σ), the permutation π
denotes the actual order of cards in the shuffled deck, and σ denotes the order guessed by
the psychic. If the guesses are purely random, then the probabilities are as we have written.

An interesting random variable is the number of correct guesses. This is the function
X : Ω→ R defined by X(π,σ) = ∑52

i=1 1πi=σi . Correspondingly we have the events Ak =
{(π,σ) : X(π,σ)≥ k}.

3We use the notation [n] to denote the set {1,2, . . . ,n}. A permutation of [n] is a vector (i1, i2, . . . , in) where
i1, . . . , in are distinct elements of [n], in other words, they are 1,2, . . . ,n but in some order. Mathematically, we
may define a permutation as a bijection π : [n]→ [n]. Indeed, for a bijection π, the numbers π(1), . . . ,π(n) are just
1,2, . . . ,n in some order.
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Example 21. Toss a coin till a head turns up. Ω = {1,01,001,0001, . . .}∪ {0}. Let us
write 0k1 = 0 . . .01 as a short form for k zeros (tails) followed by 1 and 0 stands for the
sequence of all tails. Let p ∈ [0,1]. Then, we set p0k1 = qk p for each k ∈ N. We also set
p0 = 0 if p > 0 and p0 = 1 if p = 0. This is forced on us by the requirement that elementary
probabilities add to 1.

Let A = {0k1 : k≥ n} be the event that at least n tails fall before a head turns up. Then
P(A) = qn p+qn+1 p+ . . . = qn.

Example 22. Place r distinguishable balls in m distinguishable urns at random. We
saw this before (the words “labelled” and “distinguishable” mean the same thing here).
The sample space is Ω = [m]r = {ω = (ω1, . . . ,ωr) : 1≤ ωi ≤ m} and pω = m−r for every
ω ∈Ω. Here ωi indicates the urn number into which the ith ball goes.

Example 23. Place r indistinguishable balls in m distinguishable urns at random.
Since the balls are indistinguishable, we can only count the number of balls in each urn.
The sample space is

Ω = {(!1, . . . ,!m) : !i ≥ 0, !1 + . . .+ !m = r}.
We give two proposals for the elementary probabilities.

(1) Let pMB
(!1,...,!m) = m!

!1!!2!...!m!
1

mr . These are the probabilities that result if we place r
labelled balls in m labelled urns, and then erase the labels on the balls.

(2) Let pBE
(!1,...,!m) = 1

(m+r−1
r−1 ) for each (!1, . . . ,!m) ∈ Ω. Elementary probabilities are

chosen so that all distinguishable configurations are equally likely.
That these are legitimate probability spaces depend on two combinatorial facts.

Exercise 24. (1) Let (!1, . . . ,!m)∈Ω. Show that #{ω∈ [m]r : ∑r
j=1 1ω j=i = !i for each i∈

[m]} = n!
!1!!2!...!m! . Hence or directly, show that ∑

ω∈Ω
pMB

ω = 1.

(2) Show that #Ω =
(m+r−1

r−1
)
. Hence, ∑

ω∈Ω
pBE

ω = 1.

The two models are clearly different. Which one captures reality? We can arbitrarily
label the balls for our convenience, and then erase the labels in the end. This clearly yields
elementary probabilities pMB. Or to put it another way, pick the balls one by one and assign
them randomly to one of the urns. This suggests that pMB is the “right one”.

This leaves open the question of whether there is a natural mechanism of assigning
balls to urns so that the probabilities pBE shows up. No such mechanism has been found.
But this probability space does occur in the physical world. If r photons (“indistinguishable
balls”) are to occupy m energy levels (“urns”), then empirically it has been verified that the
correct probability space is the second one!4

Example 25. Sampling with replacement from a population. Define Ω = {ω∈ [N]k : ωi ∈
[N] for 1≤ i≤ k} with pω = 1/Nk for each ω ∈Ω. Here [N] is the population (so the size

4The probabilities pMB and pBE are called Maxwell-Boltzmann statistics and Bose-Einstein statistics. There
is a third kind, called Fermi-Dirac statistics which is obeyed by electrons. For general m≥ r, the sample space is
ΩFD = {(!1, . . . ,!m) : !i = 0 or 1 and !1 + . . .+ !m = r} with equal probabilities for each element. In words, all
distinguishable configurations are equally likely, with the added constraint that at most one electron can occupy
each energy level.
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of the population is N) and the size of the sample is k. Often the language used is of a box
with N coupons from which k are drawn with replacement.

Example 26. Sampling without replacement from a population. Now we take Ω =
{ω ∈ [N]k : ωi are distinct elements of [N]} with pω = 1/N(N−1) . . .(N− k +1) for each
ω ∈Ω.

Fix m < N and define the random variable X(ω) = ∑k
i=1 1ωi≤m. If the population [N]

contains a subset, say [m], (could be the subset of people having a certain disease), then
X(ω) counts the number of people in the sample who have the disease. Using X one can
define events such as A = {ω : X(ω) = !} for some !≤ m. If ω ∈ A, then ! of the ωi must
be in [m] and the rest in [N]\ [m]. Hence

#A =
(

k
!

)
m(m−1) . . .(m− !+1)(N−m)(N−m−1) . . .(N−m− (k− !)+1).

As the probabilities are equal for all sample points, we get

P(A) =
(k
!

)
m(m−1) . . .(m− !+1)(N−m)(N−m−1) . . .(N−m− (k− !)+1)

N(N−1) . . .(N− k +1)

=
1(N
k
)
(

m
!

)(
N−m
k− !

)
.

This expression arises whenever the population is subdivided into two parts and we count
the number of samples that fall in one of the sub-populations.

Example 27. Gibbs measures. Let Ω be a finite set and let H : Ω → R be a function.
Fix β ≥ 0. Define Zβ = ∑ω e−βH (ω) and then set pω = 1

Zβ
e−βH (ω). This is clearly a valid

assignment of probabilities.
This is a class of examples from statistical physics. In that context, Ω is the set of all

possible states of a system and H (ω) is the energy of the state ω. In mechanics a system
settles down to the state with the lowest possible energy, but if there are thermal fluctuations
(meaning the ambient temperature is not absolute zero), then the system may also be found
in other states, but higher energies are less and less likely. In the above assignment, for two
states ω and ω′, we see that pω/pω′ = eβ(H (ω′)−H (ω)) showing that higher energy states are
less probable. When β = 0, we get pω = 1/|Ω|, the uniform distribution on Ω. In statistical
physics, β is equated to 1/κT where T is the temperature and κ is Boltzmann’s constant.

Different physical systems are defined by choosing Ω and H differently. Hence this
provides a rich class of examples which are of great importance in probability.

It may seem that probability is trivial, since the only problem is to find the sum of pω
for ω belonging to event of interest. This is far from the case. The following example is an
illustration.

Example 28. Percolation. Fix m,n and consider a rectangle in Z2, R = {(i, j) ∈ Z2 : 0≤
i ≤ n, 0 ≤ j ≤ m}. Draw this on the plane along with the grid lines. We see (m + 1)n
horizontal edges and (n+1)m vertical edges. Let E be the set of N = (m+1)n+(n+1)m
edges and let Ω be the set of all subsets of E. Then |Ω| = 2N . Let pω = 2−N for each
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ω ∈Ω. An interesting event is

A = {ω ∈Ω : the subset of edges in ω
connect the top side of R to the bottom side of R}.

This may be thought of as follows. Imagine that each edge is a pipe through which
water can flow. However each tube may be blocked or open. ω is the subset of pipes that
are open. Now pour water at the top of the rectangle R. Will water trickle down to the
bottom? The answer is yes if and only if ω belongs to A.

Finding P(A) is a very difficult problem. When n is large and m = 2n, it is expected
that P(A) converges to a specific number, but proving it is an open problem as of today!5

We now give two non-examples.

Example 29. Pick a natural number uniformly at random. The sample space is clearly
Ω = N = {1,2,3, . . .}. The phrase “uniformly at random” suggests that the elementary
probabilities should be the same for all elements. That is pi = p for all i ∈ N for some p.
If p = 0, then ∑i∈N pi = 0 whereas if p > 0, then ∑i∈N pi = ∞. This means that there is
no way to assign elementary probabilities so that each number has the same chance to be
picked.

This appears obvious, but many folklore puzzles and paradoxes in probability are
based on the faulty assumption that it is possible to pick a natural number at random.
For example, when asked a question like “What is the probability that a random integer is
odd?”, many people answer 1/2. We want to emphasize that the probability space has to
be defined first, and only then can probabilities of events be calculated. Thus, the question
does not make sense to us and we do not have to answer it!6

Example 30. A non-example. A dart is thrown at a circular dart board. We assume that
the dart does hit the board but were it hits is “random” in the same sense in which we say
the a coin toss is random. Intuitively this appears to make sense. However our framework
is not general enough to incorporate this example. Let us see why.

The dart board can be considered to be the disk Ω = {(x,y) : x2 + y2 ≤ r2} of given
radius r. This is an uncountable set. We cannot assign elementary probabilities p(x,y) for
each (x,y) ∈Ω in any reasonable way. In fact the only reasonable assignment would be to
set p(x,y) = 0 for each (x,y) but then what is P(A) for a subset A? Uncountable sums are
not well defined.

We need a branch of mathematics called measure theory to make proper sense of
uncountable probability spaces. This will not be done in this course although we shall later

5In a very similar problem on a triangular lattice, it was proved by Stanislav Smirnov (2001) for which he
won a fields medal. Proof that computing probabilities is not always trivial!

6For those interested, there is one way to make sense of such questions. It is to consider a sequence of
probability spaces Ω(n) = {1,2, . . . ,n} with elementary probabilities p(n)

i = 1/n for each i ∈ Ωn. Then, for a
subset A ⊆ Z, we consider Pn(A∩Ωn) = #(A∩ [n])/n. If these probabilities converge to a limit x as n → ∞,
then we could say that A has asymptotic probability x. In this sense, the set of odd numbers does have asymptotic
probability 1/2, the set of numbers divisible by 7 has asymptotic probability 1/7 and the set of prime numbers has
asymptotic probability 0. However, this notion of asymptotic probability has many shortcomings. Many subsets
of natural numbers will not have an asymptotic probability, and even sets which do have asymptotic probability
fail to satisfy basic rules of probability that we shall see later. Hence, we shall keep such examples out of our
system.
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say a bit about the difficulties involved. The same difficulty shows up in the following
“random experiments” also.

(1) Draw a number at random from the interval [0,1]. Ω = [0,1] which is un-
countable.

(2) Toss a fair coin infinitely many times. Ω = {0,1}N := {ω = (ω1,ω2, . . .) : ωi =
0 or 1}. This is again an uncountable set.

Remark 31. In one sense, the first non-example is almost irredeemable but the second
non-example can be dealt with, except for technicalities beyond this course. We shall later
give a set of working rules to work with such “continuous probabilities”. Fully satisfactory
development will have to wait for a course in measure theory.


